
Linear Differential Equation:

A differential equation is said to be linear if it can be

written in the form

Definition: Linear Equation of order n
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Definition: Linear Equation of the first order

A first-order differential equation of the form

is said to be a linear equation in the dependent variable y.
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if a1(x)  0, we can write this differential equation in

the form

where ,

P(x) and Q(x) are continuous on an interval.
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Linear Differential Equation:
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Let’s express linear equation in the differential form

If we test this equation for exactness, we find

Consequently, equation(1) is exact only when P(x) = 0. It turns

out that an integrating factor , which depends only on x, can

easily obtained the general solution of (1).
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Linear Differential Equation:
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Multiply (1) by a function (x) and try to determine (x) so

that the resulting equation

is exact.  

We see that (2) is exact if  satisfies the DE

Which is our desired IF
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Linear Differential Equation:
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we multiply by (x) defined in (4) to obtain

We know from (3)

and so (5) can be written in the form
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Linear Differential Equation:
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Integrating (6) w.r.t. x  gives

and solving for y yields

( ) ( ) ( )x y x Q x dx C  

   exp ( ) ( ) ( )y P x dx x Q x dx C   

Linear Differential Equation:
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Solution Method

1. Write the equation in the standard form

2. Calculate the IF (x) by the formula 

3. Multiply the equation in standard form by (x) nd recalling that 

the LHS is just

obtain

4. Integrate the last equation and solve for y by dividing by (x).
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Example 1

Solve the

Dividing by xcosx, throughout, we get 

Multiply by 

 cos sin cos 1
dy

x x y x x x
dx
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Example 1

Integrate both side we get

 
sec

sec sec
d x

dx x
y x x x x

2sec sec tanyx x x dx C x C   
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The usual notation implies that x is independent variable & y

the dependent variable. Sometimes it is helpful to replace x by y

and y by x & work on the resulting equation.

* When diff equation is of the form

   

 
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Linear Equation in x:
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Example 2

Solve the

2
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Example 2
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