Linear Differential Equation:

Definition: Linear Equation of order \boldsymbol{n}

A differential equation is said to be linear if it can be written in the form

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)
$$

Definition: Linear Equation of the first order

A first-order differential equation of the form

$$
a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)
$$

is said to be a linear equation in the dependent variable y.

Linear Differential Equation:

if $a_{I}(x) \neq 0$, we can write this differential equation in
the form

$$
\frac{d y}{d x}+P(x) y=Q(x)
$$

where,

$$
P(x)=\frac{a_{0}(x)}{a_{1}(x)} \quad Q(x)=\frac{g(x)}{a_{1}(x)}
$$

$P(x)$ and $Q(x)$ are continuous on an interval.

Linear Differential Equation:

Let's express linear equation in the differential form

$$
\begin{equation*}
[P(x) y-Q(x)] d x+d y=0 \tag{1}
\end{equation*}
$$

If we test this equation for exactness, we find

$$
\frac{\partial M}{\partial y}=P(x) \quad \text { and } \quad \frac{\partial N}{\partial x}=0
$$

Consequently, equation(1) is exact only when $P(x)=0$. It turns out that an integrating factor μ, which depends only on x, can easily obtained the general solution of (1).

Linear Differential Equation:

Multiply (1) by a function $\mu(x)$ and try to determine $\mu(x)$ so that the resulting equation

$$
\begin{equation*}
[\mu(x) P(x) y-\mu(x) Q(x)] d x+\mu(x) d y=0 \tag{2}
\end{equation*}
$$

is exact.

$$
\frac{\partial M}{\partial y}=\mu(x) P(x) \quad \text { and } \quad \frac{\partial N}{\partial x}=\frac{d \mu}{d x}(x)
$$

We see that (2) is exact if μ satisfies the DE

$$
\begin{align*}
& \frac{d \mu}{d x}(x)=P(x) \mu(x) \tag{3}\\
& \mu(x)=\exp \left(\int P(x) d x\right) \tag{4}
\end{align*}
$$

Which is our desired IF

Linear Differential Equation:

we multiply by $\mu(x)$ defined in (4) to obtain

$$
\begin{equation*}
\mu(x) \frac{d y}{d x}+P(x) \mu(x) y=\mu(x) Q(x) \tag{5}
\end{equation*}
$$

We know from (3)

$$
P(x) \mu(x)=\frac{d \mu}{d x}
$$

and so (5) can be written in the form

$$
\underbrace{\mu(x) \frac{d y}{d x}+\frac{d \mu}{d x}(x) y}_{\frac{d}{d x}(\mu(x) y)=\mu(x) Q(x)}=\mu(x) Q(x)
$$

Linear Differential Equation:

Integrating (6) w.r.t. x gives

$$
\mu(x) y=\int \mu(x) Q(x) d x+C
$$

and solving for y yields

$$
y=\left(\exp \left(-\int P(x) d x\right)\right)\left(\int \mu(x) Q(x) d x+C\right)
$$

Solution Method

1. Write the equation in the standard form

$$
\frac{d y}{d x}+P(x) y=Q(x)
$$

2. Calculate the IF $\mu(x)$ by the formula

$$
\mu(x)=\exp \left(\int P(x) d x\right)
$$

3. Multiply the equation in standard form by $\mu(x)$ nd recalling that the LHS is just

$$
\frac{d}{d x}(\mu(x) y)
$$

obtain $\frac{d}{d x}(\mu(x) y)=\mu(x) Q(x)$
4. Integrate the last equation and solve for y by dividing by $\mu(x)$.

Example 1

Solve the

$$
x \cos x\left(\frac{d y}{d x}\right)+y(x \sin x+\cos x)=1
$$

Dividing by $x \cos x$, throughout, we get

$$
\begin{aligned}
& \frac{d y}{d x}+\left(\tan x+\frac{1}{x}\right) y=\frac{\sec x}{x} \\
& \mu(x)=e^{\int P(x) d x}=e^{\int\left(\tan x+\frac{1}{x}\right) d x} \\
& \mu(x)=e^{\ln \sec x+\ln x}=e^{\ln \sec x} e^{\ln x}=x \sec x
\end{aligned}
$$

Multiply by

$x \sec x$

Example 1

$$
\frac{d}{d x}(y x \sec x)=\frac{\sec x}{x} x \sec x
$$

Integrate both side we get

$$
y x \sec x=\int \sec ^{2} x d x+C=\tan x+C
$$

Linear Equation in x :

The usual notation $\frac{d y}{d x}$ implies that x is independent variable \& y the dependent variable. Sometimes it is helpful to replace x by y and y by $x \&$ work on the resulting equation.

* When diff equation is of the form

$$
\begin{aligned}
& \frac{d x}{d y}+P(y) \cdot x=Q(y) \\
& I F=e^{\int P(y) d y} \quad \& \text { solution is } \quad x \times I F=\int Q \times I F d y+c
\end{aligned}
$$

Example 2

Solve the $y-x y^{\prime}=y^{\prime} y^{2} e^{y}$

$$
=>y \frac{d x}{d y}=x+y^{2} e^{y}
$$

$$
\frac{d x}{d y}-\frac{1}{y} x=y e^{y}
$$

$$
I F=e^{-\int \frac{1}{y} d y}=e^{-\ln y}=\frac{1}{y}
$$

$$
\therefore x \frac{1}{y}=\int y e^{y} \frac{1}{y} d y=\int e^{y} d y
$$

Example 2

$$
\begin{aligned}
& =>\frac{x}{y}=e^{y}+c \\
& =>x=y e^{y}+c y
\end{aligned}
$$

